2012-11-28

Flexible electronics breakthrough claimed

Flexible electronics breakthrough claimed

SAN FRANCISCO—Researchers from the University of Pennsylvania have demonstrated the ability to coat nanoscale particles of the semiconducting material cadmium selenide on flexible plastics, a breakthrough that could lead to high-performance electronics on flexible substrates.

The research team, led by David Kim, a doctoral student at Penn's department of materials science and engineering, used spin coating to deposit cadmium selenide nanocrystals dispersed in an ink-like liquid on a flexible plastic sheet. Their work was recently published in the journal Nature Communications.

"We have a performance benchmark in amorphous silicon, which is the material that runs the display in your laptop, among other devices," Kagan said. "Here, we show that these cadmium selenide nanocrystal devices can move electrons 22 times faster than in amorphous silicon."

Besides speed, another advantage cadmium selenide nanocrystals have over amorphous silicon is the temperature at which they are deposited, according to the researchers. While amorphous silicon uses a process that operates at several hundred degrees, cadmium selenide nanocrystals can be deposited at room temperature and annealed at mild temperatures, opening up the possibility of using more flexible plastic foundations, according to the researchers.


Flexible circuit fabricated in the Penn University lab of Professor Cherie Kagan.
Credit: David Kim/Yuming Lai, Penn

TAG:University of Pennsylvania Cadmium Selenide Penn Researchers Plastic

No comments:

Post a Comment